EMNLP 2023

Continual Named Entity Recognition without Catastrophic Forgetting

Duzhen Zhang, Wei Cong, Jiahua Dong, Yahan Yu, Xiuyi Chen, Yonggang Zhang and Zhen Fang

Reporter: Duzhen Zhang

University of Chinese Academy of Sciences

Friday, December 8, 2023

Background

ullet

• from scratch. This is known as Continual Named Entity Recognition (CNER).

Named Entity Recognition (NER) aims to annotate each token in a sentence with predefined sets of entity types or the non-entity type.

The traditional NER paradigm annotates tokens with a fixed set of entity types, and the NER model learns this in one go.

In a more realistic scenario, NER models need to continuously identify newly emerging entity types without the need for retraining

Challenges

Common issues in continual learning: catastrophic forgetting.

Specific issue in CNER: semantic shit of the non-entity type..

Figure 1: A simplified CNER example, where FL and CL denote Full ground-truth Labels and Current groundtruth Labels, respectively. Old entity types (such as [ORG] (Organization), [PER] (Person)) and future entity types (such as [DATE] (Date)) are masked as [O] (the non-entity type) at the current step t where [GPE] (Countries) is the current entity type to be learned, causing the semantic shift problem of the nonentity type (the second row CL).

Existing Work:

• The designed knowledge distillation did not ac plasticity.

 Only general forgetting issues were considered, wi semantic shift of the non-entity type.

• The designed knowledge distillation did not adequately consider the trade-off between stability and

• Only general forgetting issues were considered, without addressing the specific CNER problem, such as the

Our CPFD Method

- knowledge and establishing a suitable balance between stability and plasticity.

$$\begin{split} \mathcal{L}_{ ext{PFD}} &= \sum_{i=1}^{|X^t|} \sum_{j=1}^{|X^t|} \left\| \left\| \sum_{k=1}^K oldsymbol{A}_{\ell,k,i,j}^t - \sum_{k=1}^K oldsymbol{A}_{\ell,k,i,j}^{t-1}
ight\|^2 \\ &+ \sum_{k=1}^K \sum_{j=1}^{|X^t|} \left\| \left\| \sum_{i=1}^{|X^t|} oldsymbol{A}_{\ell,k,i,j}^t - \sum_{i=1}^{|X^t|} oldsymbol{A}_{\ell,k,i,j}^{t-1}
ight\|^2 \\ &+ \sum_{k=1}^K \sum_{i=1}^{|X^t|} \left\| \left\| \sum_{j=1}^{|X^t|} oldsymbol{A}_{\ell,k,i,j}^t - \sum_{j=1}^{|X^t|} oldsymbol{A}_{\ell,k,i,j}^{t-1}
ight\|^2 \end{split}$$

• We design a pooled features distillation loss to alleviate catastrophic forgetting by retaining linguistic

By appropriately adjusting the degree of pooling, a compromise feature distillation loss can be obtained.

Our CPFD Method

- within the current non-entity type for classification, mitigating the problem of semantic shift.
- exhibits sufficient confidence.

$$\widetilde{Y}_{i,e}^{t} = \begin{cases} 1 \text{ if } Y_{i,e_{o}}^{t} = 0 \& e = \underset{e' \in \mathcal{E}^{t}}{\operatorname{argmax}} Y_{i,e'}^{t} \\ 1 \text{ if } Y_{i,e_{o}}^{t} = 1 \& e = \underset{e' \in e_{o} \cup \mathcal{E}^{1:t-1}}{\operatorname{argmax}} \widehat{Y}_{i,e'}^{t-1} \& u < \tau_{e} \\ 0 \text{ otherwise} \end{cases}$$

• We develop a confidence-based pseudo-labeling strategy to specifically identify previous entity types

• To better reduce the recognition errors from the old model, we use entropy as a measure of uncertainty and the median entropy as a confidence threshold, retaining only those pseudo labels where the old model

Method Overview

Figure 2: Our CPFD method aims to learn a NER model within a continual learning paradigm, where old entity types are collapsed into the non-entity type in the current step. We constitute a suitable balance between stability and plasticity by pooled features distillation loss to prevent catastrophic forgetting and generate high-quality pseudo-labels from old predictions by a confidence-based pseudo-labeling strategy to deal with the semantic shift problem.

Experimental Setting

Datasets

Table 3: The statistics for each dataset.

	# Entity Type	# Sample	Entity Type Sequence (Alphabetical Order)
NLL2003	4	21k	LOCATION, MISC, ORGANISATION, PERSON
I2B2	16	141k	AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL, IDNUM, MEDICALRECORD, ORGANIZATION, PATIENT, PHONE, PROFESSION, STATE, STREET, USERNAME, ZIP
Votes5	18	77k	CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

CNER Settings

•	CoNLL2003	FG-1-PG-1	FG-2-PG-1
•	I2B2	FG-1-PG-1	FG-2-PG-2
•	OntoNotes5	FG-1-PG-1	FG-2-PG-2

- **Evaluation Metrics**
 - Micro F1 and Macro F1 scores.

olit the training set into disjoint slides, where each slide rresponds to a different continual learning step.

each slide, retain labels only for the entity types to be learned, hile masking the other labels as the non-entity type.

FG-8-PG-1 FG-8-PG-2 FG-8-PG-1 FG-8-PG-2

Experimental Results

Main Results

_	Baseline	FG-1-PG-1		FG-2-PG-2		FG-8-PG-1		FG-8-PG-2	
Dataset		Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1	Mi-F1	Ma-F1
I2B2	FT	17.43±0.54	13.81±1.14	28.57±0.26	21.43±0.41	20.83±1.78	18.11±1.66	23.60±0.15	23.54±0.38
	PODNet	12.31±0.35	17.14±1.03	34.67±2.65	24.62±1.76	39.26±1.38	27.23±0.93	36.22±12.9	26.08±7.42
	LUCIR	43.86±2.43	31.31±1.62	64.32±0.76	43.53±0.59	57.86±0.87	33.04±0.39	68.54±0.27	46.94±0.63
	ST	31.98±2.12	14.76±1.31	55.44±4.78	33.38±3.13	49.51±1.35	23.77±1.01	48.94±6.78	29.00±3.04
	ExtendNER*	41.65±10.11	23.11±2.70	67.60±1.15	42.58±1.59	45.14±2.91	27.41±0.88	56.48±2.41	38.88±1.38
	ExtendNER	42.85±2.86	24.05±1.35	57.01±4.14	35.29±3.38	43.95±2.01	23.12±1.79	52.25±5.36	30.93±2.77
	CFNER*	64.79±0.26	37.79±0.65	72.58±0.59	51.71±0.84	56.66±3.22	36.84±1.35	69.12±0.94	51.61±0.87
	CFNER	62.73±3.62	36.26±2.24	71.98±0.50	49.09±1.38	59.79±1.70	37.30±1.15	69.07±0.89	51.09±1.05
	CPFD (Ours)	74.19±0.95 [†]	48.34±1.45 [†]	78.19±0.58 [†]	56.04±1.22 [†]	74.75±1.35 [†]	56.19±2.46 [†]	81.05±0.87 [†]	65.04±1.13
	Imp.	19.40	☆10.55	↑5.61	↑4.33	↑14.96	↑18.89	↑11.93	↑13.43
	FT	15.27±0.26	10.85±1.11	25.85±0.11	20.55±0.24	17.63±0.57	12.23±1.08	29.81±0.12	20.05±0.16
	PODNet	9.06±0.56	8.36±0.57	19.04±1.08	16.93±0.85	29.00±0.86	20.54±0.91	37.38±0.26	25.85±0.29
	LUCIR	28.18±1.15	21.11±0.84	56.40±1.79	40.58±1.11	66.46±0.46	46.29±0.38	76.17±0.09	55.58±0.55
OntoNotes5	ST	50.71±0.79	33.24±1.06	68.93±1.67	50.63±1.66	73.59±0.66	49.41±0.77	77.07±0.62	53.32±0.63
	ExtendNER*	51.36±0.77	33.38±0.98	63.03±9.39	47.64±5.15	73.65±0.19	50.55±0.56	77.86±0.10	55.21±0.51
	ExtendNER	50.53±0.86	32.84±0.84	67.61±1.53	49.26±1.49	73.12±0.93	49.55±0.90	76.85±0.77	54.37±0.57
	CFNER*	58.44±0.71	41.75±1.51	72.10±0.31	55.02±0.35	78.25±0.33	58.64±0.42	80.09±0.37	61.06±0.37
	CFNER	58.94±0.57	42.22±1.10	72.59±0.48	55.96±0.69	78.92±0.58	57.51±1.32	80.68±0.25	60.52±0.84
	CPFD (Ours)	66.73±0.70 [†]	54.12±0.30 [†]	74.33±0.30 [†]	57.75±0.35 [†]	81.87±0.47 [†]	65.52±1.05 [†]	83.38±0.18 [†]	66.27±0.75
	Imp.	↑7.79	↑11.90	↑1.74	↑1.79	☆2.95	☆6.88	☆2.70	15.21

Table 2: Comparisons with baselines on I2B2 and OntoNotes5. The red denotes the highest result, and the blue denotes the second highest result. The marker \dagger refers to significant test p-value < 0.05 comparing with CFNER. * represents results from re-implementation. Other baseline results are cited from CFNER (Zheng et al., 2022).

Experimental Results

• Ablation Study

Table 3: The ablation study of our CPFD on I2B2 and OntoNotes5 under the setting FG-1-PG-1. When compared with Ours, all ablation variants severely degrade CNER performance. It verifies the importance of all components to address CNER collaboratively.

	12	B2	OntoNotes5		
Methods	Mi-F1	Ma-F1	Mi-F1	Ma-F1 54.12±0.30	
CPFD (Ours)	74.19±0.95	48.34±1.45	66.73±0.70		
w/ L _{FD}	71.46±1.19	45.17±1.28	63.80±1.01	51.83±0.73	
w/ LPFD-lax	70.22±0.90	43.89±1.10	62.32±0.53	50.12±0.70	
w/o \mathcal{L}_{PFD}	68.66±0.88	42.28±0.79	60.80±0.86	48.94±1.38	
w/o CPL	54.86±5.36	37.39±3.58	59.37±0.82	46.68±0.45	
w/o ART	72.29±1.56	45.35±1.83	65.19±1.33	52.94±0.46	

Thanks !